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Practical tests with irregular and regular finite spectra of a proposed statistical measure
for quantum chaos
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Using the firstN=668 measured eigenfrequencies of a two-dimensi¢@a) microwave cavity, we test
experimentally the properties of a quantity(x) proposed by Aurich, Bolte, and Steirjéthys. Rev. Lett73,
1356 (1994)] as a statistical measure for quantum chaos in spectra. Our data confirm that the distribution of
W(x) for the spectrum of the classically irregular cavity has a statistically significant Gaussian form. We also
calculate spectra of classically regular 2D cavitiestangular and squarap to comparable values &f and
calculate theiW(x) distributions. Finding that their distributions, too, are close to Gaussian form, we conclude
that one should not expect to be able to use the distributiow/f) as an effective experimental tool for
deciding whether a givefinite quantum spectruroorresponds to a classically irregul@haotio or regular
(integrable system[S1063-651X96)51607-1

PACS numbds): 05.45+b, 03.65.Ge

Investigation of quantum systems whose classical counSchralinger (scalar wavg equation and its boundary condi-
terparts are chaotic is the subject of quantum chaos, a dyions are not mathematically equivalent to those for the 3D
namically growing field[1,2]. So far, because theoretical Helmholtz equation fofvectop electromagnetic waves. GSE
work in quantum chaos has greatly exceeded experimentalatistics have been found for numerically computed eigen-
work, many theoretical predictions lack empirical confirma-Vvalues of the lattice Dirac operator in quantum chromody-
tion. The experimental work we report in this Rapid Com-hamics[14].

munication on the distribution of the quantiy(x) proposed ~ Quantum spectra of classically integrable systems are be-
in [3] as a statistical measure for chaos in spectra is directefved to have the statistics of Poissonian random proceses;
toward closing this gap. these reflect a tendency toward level clustering, although a

In contrast to a bounded classical Hamiltonian systen?arefm statistical analysis showed important deviations from
(compact phase spacthat is chaotic, i.e., its evolution is the “pure” Poisson casgl5]. .
exponentially sensitive to the initial conditions, the corre- In addition to the results described above, there are clas-
sponding bounded quantum system has a discrete eigene’ﬂCa”y ChaOt_IC systems having quantal counterparts whose
ergy spectrum and evolves quasiperiodically. Nevertheles§Pectral statistics are not those of RMT. One well known
there has been a vigorous search for signatures of chaos §xa@mple is geodesic flows on hyperbolic surfaces, which ex-
quantum systems. The fingerprints of classical chaos wer@ibit so-called arithmetical cha¢$6,17. This example does
discovered in the distribution of eigenenergies of the correl0t have the quantal spectral statistics of thenarithmeti-
sponding quantum system. It was found that the eigenenergf@) strongly chaotic systems described above; rather, it has
distribution for even a low-dimensional>=(2) classically Near-Poisson quantal spectral statistics, such as is “ex-
chaotic system can be described by random matrix theor9eCted” for classically regulqr systems. T.herefore, there is a
(RMT) [4]. Studies in RMT have emphasized the Gaussiartl€ar need for new, quantitative statistical mea@jref
orthogonal (GOE), Gaussian unitaryGUE), and Gaussian quantum chaos in spectra. Such mea(Si)lrs-houId discrimi-
symplectic(GSB ensembles. The GOE and GBEUE] per- nate negtly b_etwe_en re_:gular and_ irregular s_pectra that, we
tain(s) to physics that igis nof invariant under time rever- emph_a5|ze, will bdinite in all practical cases, i.e., obtained
sal. All three are characterized by level repulsion: at smalfXPerimentally or numerically. .
spacings linear for GOE, quadratic for GUE, and degree four A recent paper{3] presented a quantity to “measure
for GSE. guantum chaos in spectra,” vizZW(X) =N (X)/VAL(X);

Predictions of RMT have been confirmed in two- NV:u(X) is the fluctuating part of the spectral staircase func-
dimensional2D) quantum billiardd1,5,6]. Of great experi-  tion M(x) =Mx) + Ny /(x), M) is the smooth Weyl term
mental importance for bounded systems is that the 2D Schralescribing  the  “mean  behavior” and A.(x)
dinger equation is equivalent to the 2D Helmholtz equation=Ilim___.A3(L,x), whereA(L,x) is the spectral rigidity.
for electromagnetic waves,Vé+k?)W=0, wherek is a  For the case considered in this papet, JE, whereE is the
wave vector. This allows analogs of 2D bounded quantunenergy above the ground state.
systems to be studied experimentally with 2D microwave The results of Ref3] for the asympototicX— «) distri-
[7—9] or acoustid10] cavities. In particular, GOE and GUE bution of W(x) may be summarized as follow&) for scal-
statistics, respectively, have been confirmed for microwavéng, strongly chaotic, bound classical systems, including
cavities that ar¢7—-9] (are not[11,12) time-reversal invari- those exhibiting arithmetical chaos, the distribution should
ant. GOE statistics were also found for 3D irregularly shapede a Gaussian(ii) for classically integrable systems, it
microwave cavitieg13], even though the physics of the 3D should be non-Gaussian.
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FIG. 1. A portion of the measured frequency spectrum for a 2D  FIG. 2. The nearest-neighbor level-spacing distribution for the
microwave cavity(shape shown in the ingethat simulates a clas- cavity shown in Fig. Xinse). The full line shows the GOE predic-
sically chaotic 2D quantum billiard. Note: the tops of two resonancetion; the dot-dashed line shows a Brody distributigee the tejt
peaks were “clipped” to make room for the inset. fitted to the experimental distribution, giving= 1.059). Theinset

shows the experimental spectral rigiditys(L) compared to GOE

An obvious disadvantage of using this spectral measure igu” line) and Poissoridashed ling predictions.

that one is supposed to constridf(x) asymptotically for Microwave power was coupled into and out of the cavity
x—o and then study its distribution for botk and L  via coaxial cables terminated by small loops that were in-
—o. Because any experimental or numerical spectrum isserted into the cavity through small hol@6 mm diameter
perforce, finite, the practical utility oN(x) will hinge onits  located on one of the side walls at the cavity midplane. Both
nonasymptoticehavior. the size and the insertion depth of each loop were fixed em-
Using finite spectraobtained numerically, the authors of pirically as a compromise between coupling strong enough
Ref. [3] presented supporting evidence for their conjectureso excite/detect even weak resonances and coupling weak
for W(x), see above, for three different chaotic systefas: enough to avoid strong perturbation of the cavity.
geodesic flow on a nonarithmethic compact hyperbolic sur- Over the frequency range 0.5—-18 GHz we recorded trans-
face of genus two, using the 4500th to 6000th eigenvaluesnission spectra for the cavif{t9] and stored them in a com-
(b) a billiard on the hyperbolic plane that shows arithmeticalputer. We ensured that we did not miss weakly excited
chaos, using the first 1040 eigenvaluéy; a truncated hy- and/or detected resonances by recording spectra for several
perbola billiard on the Euclidean plane, using the first 1850ifferent positions of the coupling antenngk3]. We were
eigenvalues. In all three cases the Gaussian form of the digble to resolve cleanly 668 eigenfrequencies from the ground
tributionsW(x) was found to be statistically significant even state at 0.762 GHz up to a maximum of 14.998 GHz. Figure
though the results were obtained with finitevalues, i.e., 1 shows the 8-10 GHz portion of the spectrum, with the
were nonasymptotic. logarithmic vertical scale bringing out weaker resonances
In experiments simulating 2D quantum billiards with 2D having amplitudes 2—3 orders of magnitude below the stron-
microwave cavities used at room temperature, one typicallgest one.
obtains well-resolved spectra up to 600—700 eigenfrequen- We analyzed the transmision spectra in two different
cies above the ground statBecause the leading term in ways: (1) After unfolding the spectruni13], we calculated
NMw)xv? and because each level has a finite frequencyhe nearest-neighbor-spacing distribut{dn20] and spectral
width Av~v/Q given by the cavity quality facto®, there  rigidity As(L) [1] and compared them with GOE predic-
must exist av* above which one can no longer cleanly re-tions. For this type of analysis, the formula
solve levels] En=kﬁ=(277/c)2vﬁ relates energiek,, to measured reso-
To our knowledge, this Rapid Communication reports thenance frequencies,,. (2) We calculated the distribution of
first experimental test of the usefulness of the quantitythe functionW(x) introduced in[3]. Herex,=k, .
W(x) as a statistical measure for quantum chaos in a classi- Figure 2 and its inset show, respectively, the nearest-
cally chaotic system. Our experiment used a microwave cawaeighbor-spacing distribution and spectral rigidity(L) for
ity (inset in Fig. 1 that was built to simulate a classically our 2D cavity. For the former we performed a least-squares
chaotic quantum billiard. The cavity had an area offit to the empirical Brody distribution [21],
0.0886(2) i and a perimeter of 1.256(2) m. Its height P4(s)=as’exp(—bs?*?), wheres is a level spacing normal-
d=6.4 mm was chosen to ensure two-dimensionality up tazed to the local average level spacingg,is a (level repul-
Vmax=C/2d=23.4 GHz. Constructed of polished brass, thesion) parameter, anda=(8+1)b, b={I'[(8+2)/(B
cavity had a quality factoQ=2x10°. The cavity had four +1)]}#*1, T" being the gamma function. The fit yields
sidewalls, two convex with average radius ardunm and B=1.05-0.09; see the dot-dash line in Fig. 2. Because
two straight but nonparallel; this geometry ensured that it§3=0 [8=1] corresponds to the PoisspBOE] level statis-
classical periodic orbits were unstalfleard chaosand iso- tics, our results, as expected, agree with the GOE (adigl
lated. line in Fig. 2.
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% [ X [=W(w)] for the lowest 657 levels of a rectangular billiafske

S K the tex} compared with a fitted Gaussian. The calculations were
& o2 A ] done forL=200.

01} 4 whereW(w;) is nonzero, measures the departure of the ex-
perimentaDV(w) from the fittedG(w). We foundV to be
0.97x10 4 [2.03x 10 ] for the results presented in Fig.

s 2 1 0 1 2 3 4 s 3(a [Fig. Ab)]. _ _ _

Distribution of W(x) Qualitatively, visual inspection of Figs.(& and 3b)

and quantitatively, the small values of show that our
W(w) data are approximated well by Gaussian functions.

. o However note that the variance of YW(w)
[=W(w)] for the lowest 668 levels of the cavity shown in Fig. 1 e L. . !
(insed compared with fitted Gaussian distributions: partal, vaf W]= [ Zdww?V(w), which is 1.28 for Fig. 8) and

W(w) obtained for L=100; panel (b), W(w) obtained for 1.21 for Fig. 3b), has not yet reached the asymptotic value
L =200. of 1 predicted by theory3]. We also used the spectral en-

tropy W)= — [ LZdww(w)InW(w) as a quantitative mea-

The inset of Fig. 2 compares the spectral rigidity(L)  sure for spectral randomne§3]. Using our data, we ob-
for our cavity data with the theoretical prediction for GOE tained 1.54 fol. =100 and 1.50 fot. =200.
(full line) and Poissortdashed lingstatistics. The small de-  Given the strictly limited number of energy levels avail-
parture of the data from the GOE prediction confirms thatable experimentally, a crucial question is whether the method
our experimental system is classically strongly chaotic. presented irf3] for measuring chaos in spectra can distin-

Figure 3 shows the distributiom/(w) of the quantity guish clearly between classically integrable and classically
W(x) [3]. chaotic quantum systems. To check this, we calculated

Because of the finite width of each resonance and, ap(w) for two integrable systems: a rectangular cavRC)
higher frequencies, the requirement that one maintain twoand a square cavitySC) that simulated rectangular and
dimensionality, it is an inescapable experimental fact thasquare billiards, respectively. We chose the areas of RC,
one must deal with finitex values; one cannot pass experi- 25x 35 cm?, and of SC, 29.7%29.77 cn?, to be close to
mentally to the asymptotic regime afandL —. (Thisis  the area 88®) cm? of our experimental chaotic cavitZC).
also the case for numerically computed spectra;[8f.) Over the frequency range 0—15 GHz, QRC) [SC] has 668
Therefore, we approximatedA.(x) by determining (657) [667] eigenfrequencies, which guarantees that one will
A5(L,x) for several experimentally accessible values. be comparing statistics computed for nearly equal numbers
Figure 3a) [Fig. 3(b)] showsW(w) obtained forL=100 of levels.
[L=200]. Fitting a Gaussian function G(w) Figure 4 showsV(w) for RC. Fitting a Gaussian curve
= JA/mexp(—Aw?)+B, where A and B are fitting param- G(w) gives A=0.470(6) andB=0.000q7). Note that
eters, to W (w) gave A=0.369(5) [0.388(7), and we calculatedV(w) for RC for the same range of and
B=0.0000(6)[0.0000(8] for L=100[L=200]. The mean L used for our experimental CC data in FigbB in particu-
varianceV=E§ZQ[W(wi)—G(Wi)]Z/n, whereW(w;) is the  lar, for L=200. Calculations for RC give a mean vari-
value of W in theith bin, andn is the total number of bins ance V=1.45<10"4, va{W]=1.06, and gW]=1.44.

FIG. 3. Experimentally obtained distributions o#(x)
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Qualitatively, visual inspection of Fig. 4 shows tha{w) As.,=1.5. Our result obtained by averaging ag(L,x)

reasonably approximates the “regular” RC data. Quantita-overx fo_r L =200 for the RC spectrum used for Fig. 4 is the

tively, the small value ob’ confirms this. We obtained simi- same, viz., 1.51. . _ -~

lar results(not shown hergfor SC. In summary, for a classically chaotic 2D quantum billiard
We remark that the widths of the experimentalw)  Simulated by a 2D microwave cavity, we have evaluated dis-

distributions shown in Figs.(d) and 3b) for CC are some- tributions of a functionV(x) introduced as a spectral mea-

what larger than that in Fig. 4 for the integrable RC. Simi-SU"® for chaos in spectra. We found that the distribution of

larly, the spectral entropy for CC is several percent larger’V(X) iS approximated well by a Gaussian distribution. How-
tha)r/1 that fopr RC Py P 9 ever, theoretically calculated distributions \M{(x) for clas-

We conclude that if one is given a finite spectrum for anSICally integrable quantum systems, such as those simulated
unknown system, it will be very difficult to use only the by rectangular and square cavities, are also close to Gauss-
similarity, or lack 1thereof of itsV(w) to a Gaussian distri- ian. Given the inevitable, practical restriction of having only

. : ) . ._a finite number of levels in our experimental spectrum, we
bution to decide whether the underlying classical dynamlcsl‘.ound that the shape of the distribution 8f(x) is not sen-

is integrable or nonintegrable. n _sitive enough to be used as a practical diagnostic tool for
We believe that this somewhat surprising result, obtainegjistinguishing between classically chaotic and classically in-

for classically integrable systems where one would expect tggrable quantum systems only on the basis of the first
get a much narrower distribution, is connected with the propN =650 levels. Whether this will continue to be the case for
erties of W(x). Compared to the classically chaotic casemuch larger values dfl can only be addressed when one is
(level repulsion, level-spacing fluctuations are bigger for able to obtainexperimentally or numericaljywell-resolved
classically integrable systenigvel clustering; additionally,  spectra with many more levels.

the spectral rigidityA;(L) for the regular case is found to

saturate at largé at the value(much below L/15 [15,18|. For financial support, LS aknowledges K.B.N. Grant No.
For example, for the firsN levels of RC one can use the 2 PO3B 093 09 and P.M.K. acknowledges NSF Grant No.
results of Ref[15] (its Eq. 3 withe,,=0.5) to estimate that PHY94-23001. We would like to thank J. Verbaarschot for
A3s,=0.06JN; for N=657, this yields the estimate valuable discussions.
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